Nanotechnology and Polymer Solar Cells
نویسنده
چکیده
In response to environmental concerns there is a drive towards developing renewable, and cleaner, energy technologies. Solar cells, which harvest energy directly from sunlight, may satisfy future energy requirements, but photovoltaic devices are currently too expensive to compete with existing fossil fuel based technologies. Polymer solar cells, on the other hand, are cheaper to produce than conventional inorganic solar cells and can be processed at relatively low temperatures. Furthermore, polymer solar cells can be fabricated on surfaces of arbitrary shape and flexibility, paving the way to a range of novel applications. Therefore, polymer solar cells are likely to play an important role in addressing, at least in some small part, man’s future energy needs. Here, the physics of polymer photovoltaics are reviewed, with particular emphasis on the computational tools which can be used to investigate these systems. In particular, the authors discuss the application of nanotechnology in self-assembling complex nanoscale structures which can be tailored to optimize photovoltaic performance. The role of computer simulations, in correlating these intricate structures with their performance, can not only reveal interesting new insights into current devices, but also elucidate potentially new systems with more optimized nanostructures.
منابع مشابه
Effect of Seed Layer on the Morphology of Zinc Oxide Nanorods as an Electron Transport Layer in Polymer Solar Cells
Zinc oxide has been considered as a promising semiconductor material for fabrication of transparent conductive oxides (TCOs), electronic devices, optoelectronics, and solar cells. Among the various morphologies of zinc oxide, nanorods are more widely used because of the ease of synthesis and providing a direct path for the transport of charge carriers. The electrochemical deposi...
متن کاملRadiation induced damage and recovery in poly(3-hexyl thiophene) based polymer solar cells.
Polymer solar cells have been characterized during and after x-ray irradiation. The open circuit voltage, dark current and power conversion efficiency show degradation consistent with the generation of defect states in the polymer semiconductor. The polymer solar cell device remained functional with exposure to a considerable dose (500 krad (SiO(2))) and showed clear signs of recovery upon remo...
متن کاملEfficiency Enhancement of Si Solar Cells by Using Nanostructured Single and Double Layer Anti-Reflective Coatings
The effect of single and double-layer anti-reflective coatings on efficiency enhancement of silicon solar cells was investigated. The reflectance of different anti-reflection structures were calculated using the transfer matrix method and then to predict the performance of solar cells coated by these structures, the weighted average reflectance curves were used as an input of a PC1D simulation....
متن کاملStudy the Effect of Silicon Nanowire Length on Characteristics of Silicon Nanowire Based Solar Cells by Using Impedance Spectroscopy
Silicon nanowire (SiNW) arrays were produced by electroless method on polycrystalline Si substrate, in HF/ AgNO3 solution. Although the monocrystalline silicon wafer is commonly utilized as a perfect substrate, polycrystalline silicon as a low cost substrate was used in this work for photovoltaic applications. In order to study the influence of etching time (which affects the SiNWs length) on d...
متن کاملImprovement of light harvesting by inserting an optical spacer (ZnO) in polymer bulk heterojunction solar cells: A theoretical and experimental study
By introducing a thin ZnO layer as an optical spacer, we have demonstrated that inserting this layer between an active layer and a reflective electrode results in a re-distribution of the optical electric field inside bulk heterojunction solar cells. A theoretical analysis by optical modeling showed that the thin ZnO layer could shift the position of the maximum of the electric field into the a...
متن کامل